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Abstract—A damage model for britfle materials subject to arbitrary stress is developed. By con-
sidering dilute distributions of flat microcracks, self-similarly propagating in a linear elastic matrix,
constitutive equations are obtained taking into account both stress- and damage-induced anisotropy.
The crack size and, for closed cracks, the frictional sliding vector are assumed as internal variables;
the evolution equations, obtained through properly defined sliding and crack growth criteria, make
it possible to state the limit conditions of the stable response to applied stresses. Comparisons
between experimental and theoretical results refated to different loading paths show the capabilities
of the model. Finally the unstable response to uniaxial stresses is analysed in order to show the
influence of the stressing mode and of the crack distribution on the post-peak behavior.

1. INTRODUCTION

It is well known that brittle and quasi-brittle materials (e.g. ceramics, mortar, concrete,
rocks and brittle composite materials) exhibit, in loading processes, a progressive loss of
stiffness (up to a limit load beyond which strain softening takes place), stress-induced
anisotropy, dilatancy and linearity in the unloading phase with vanishing residual strains.
Such mechanical behavior is commonly attributed to the presence of material defects, like
flaws and voids. In a loading process, existing defects may grow and coalesce and new
defects may be nucleated inducing a progressive change in the material microstructure, the
damage, to which the loss of stiffness is directly related.

Several continuum phenomenological and micromechanical damage models have been
proposed {see for reference, Krajcinovic (1989)], in which the changes in the material
structure are generally described through the evolution of suitably defined internal variables.
Although phenomenological models have been proposed in order to account for the aniso-
tropic stiffness degradation due to the different behavior of the defects under compressive
or tensile stress, an effective description of the anisotropic damage in brittle and quasi-
brittle materials can be obtained through a micromechanical approach, based on the model
of an elastic solid containing growing microcracks.

In modeling a given material as a microcrack-weakened elastic solid it is necessary, at
first, to assume suitable hypotheses on the crack geometry and distribution inside the
representative volume element; then, in order to develop the constitutive equations by
means of homogenization techniques, the microcrack response to applied stresses must be
formulated with reference both to the displacement jumps across the crack faces, that
contribute to the macrostrain, and to the kinetics of the crack growth that characterizes
the damage process. The effect of the frictional contact between the crack faces, which
markedly affects the model response, can easily be taken into account if moderate micro-
crack concentrations are assumed; in this case the hypothesis of ignoring the disturbance
in the stress field due to the presence of the other microcracks allows simple relations
between the contact tractions and the macrostresses to be resolved on the crack plane.

The model by Krajcinovic and Fanella (1986), proposed in order to simulate the
damage in concrete under tensile stresses, is developed by assuming self-similar propagating
circular flat cracks; the displacement discontinuities across the crack faces are evaluated
neglecting the crack interaction effects. Since in macroscopically isotropic brittle materials,
at rupture inception, the propagation of the closed microcracks may be not self-similar, in
the models by Kachanov (1982a,b), Nemat-Nasser and Obata (1988) and Fanella and
Krajcinovic (1988) the kinetics of the crack growth have been described by considering
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straight and kinked cracks, the latter being modeled by means of an equivalent two-
dimensional crack system ; moreover in these models the crack interaction effects have been
neglected. The two-dimensional model by Sumarac and Krajcinovic (1987, 1989) and
Krajcinovic and Sumarac (1989) takes into account the crack interaction effect on the
compliance of the microcrack-weakened elastic solid through the self-consistent method
applied to a two-dimensional distribution of growing straight cracks; however, from the
analysis developed by the authors, related to uniaxial tensile stress, it is emphasized that
good accuracy may be obtained even with the assumption of non-interacting cracks.
Recently, Ju (1991) formulated a two-dimensional model which takes into account both
the self-similar propagation and the kinking of straight cracks ; kinked cracks are modeled
through an equivalent straight crack and the interaction effect is taken into account through
the self-consistent method.

In this paper a damage model for brittle materials, based on the hypothesis of self-
similar growth of non-interacting flat cracks is developed. It is pointed out that the model,
which is rigorously valid only for special cases (e.g. dilute crack concentrations, interface
cracks, etc.), may give acceptable results for initially isotropic materials up to rupture
inception. Moreover the model is also effective when non-proportional loading paths,
eventually inducing triaxial stress states, are considered ; in this case the two-dimensional
kinked crack models may be employed, but with difficulty, and the self-consistent method,
which markedly underestimates the overall stiffness of the microcracked model (Hashin,
1988) is cumbersome to apply.

The microcrack ensemble is described through orientations, each related to a set of
equioriented cracks; to each orientation is associated the crack size and, for closed cracks,
the frictional sliding vector, which are considered as internal variables. Through properly
defined sliding and crack growth criteria, the evolution equations giving the rate of the
internal variables are obtained, which allow the formulation of the incremental constitutive
equations and the stating of the limit conditions for the model, whose response becomes
unstable once such conditions are attained. A finite step numerical procedure for evaluating
the strain increments corresponding to given stress increments is developed and employed
to analyse the model response under non-proportional loadings. The examples point out
the effect of stress- and damage-induced anisotropy ; some comparisons between the theor-
etical and experimental results related to different loading paths show the good capabilities
of the proposed model together with its validity limits. Finally the unstable response to
uniaxial stresses is analysed from which it emerges that the stressing mode and the assumed
microcrack distribution affect the post-peak behavior, that may exhibit snap-back
instability.

2. THE MICROCRACKED ELASTIC SOLID

The material is modeled as a solid constituted by a linear isotropic elastic matrix
containing plane microcracks, growing in the loading process. In order to obtain constitutive
equations for the considered solid under consideration, reference is made to the macrostress
T and macrostrain E (Nemat-Nasser and Horii, 1990) ; the latter is given as the sum of the
mean strain in the matrix and of the contribution of the discontinuities in the displacement
field due to the presence of the microcracks:

E=KT+ %/Zf/ sym [u*(&) ® n] d4, €))

where K is the compliance fourth-order tensor of the elastic matrix, the sum involves all
the cracks inside the representative volume element ¥~ (of measure V), & is the surface
of a crack having normal n to the crack plane, and u*(§) is the displacement jump between
the opposite faces of the crack at a point whose location is given by the vector § in the local
crack reference.
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The ensemble of cracks inside the representative unit volume is represented by A"
subsets ; the ith subset is composed of #, equioriented cracks and is identified by the unit
vector n; normal to their crack planes. Moreover these cracks have the same shape and
equal characteristic size ,; their orientation in the plane of normal n,, defined by the unit
vector m, is random. Since the crack growth is assumed to be self-similar, in the loading
process all the cracks of a subset are characterized only by their size. Following this
approach the 4" subsets become a characteristic of the solid, since they state its symmetry
group’; for &/ — oo, when « and # are equal for each subset, the solid tends to be isotropic.

The contribution to the strain due to the microcracks can be expressed as follows:

N
E.=3 3 | [u@n@n+symwi) ®n]]dd, 0)

i=1 j=1 Jof

where u} and w} are the jump displacements, respectively normal and tangential to the
crack.

If the crack interaction is neglected and the crack faces are assumed to be traction free,
from the reciprocity theorem applied to a single flat crack inside an infinite elastic solid, it
follows that the jump displacement across the faces of the crack of normal n; depends on
the resolved stresses on the crack plane o, = n,* Tn;, t;, = (I—n; ® n;)Tn,, as follows:

u;(f) = gi(Ea vV, @, c)o.i’ (33)
wi($) = R(m)G,(E, v, 2, C)Ri(mj)Tfi- (3b)

Here g, represents the characteristic function of the normal jump displacement, which
depends on the crack size and shape, the elastic moduli £ and v of the matrix and on the
location &, and the tensorial function G,, expressed in the crack local reference, characterizes
the tangential jump displacement, R;(m;) being the rotation between the unit vector m; and
a reference vector.

By substituting eqns (3) in (2), because of the hypothesis of in-plane random crack
orientation, it follows that

N
E = ; nlgiom ® n,+sym (g/'w; @), @

where g; and g;” are scalar functions, related to the crack shape.
Equation (4) implies that each subset of microcracks contributes to the macrostrain
through an extension and a slide respectively given by

& = "ig;(E’ v, ai)ai’ (Sa)
i = n i (E, v, @))%, (5b)

the latter showing an isotropic dependence of the sliding on the shearing stress. By means
of a dimensional analysis of eqns (5) it follows that

g = cm'aisais (6a)

Cutti T (6b)

Y

where «; = a,/a,, is the ratio between the actual crack size and the reference one and the
constants c,; and c,; represent, respectively, the extensional and sliding compliance of the
ith subset when no crack grows:
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3
_ iy

€ =" g:(»), (7a)
”ia'gi =
Cy = E gi(v). (7b)

Equations (6) hold even though different sets of randomly distributed parallel cracks
are considered, each one having a different shape but the same size ; in this case the constants
¢,; and ¢,; can be obtained through a superposition of the compliances related to each set,
whose form is analogous to that given in eqns (7). Instead of evaluating the above-mentioned
constants on the basis of the crack shape, it seems more appropriate to consider them as
model parameters, to be determined by experiments; so the parameters characterizing the
microcracked elastic solid are the elastic moduli of the matrix, the orientations n, of the A4~
subsets and the related compliances ¢,; and ¢,;.

The equations obtained, related to the traction-free condition on the crack faces, may
be extended to include the effect of the contact tractions acting on the opposite faces of
closed cracks. To this end the assumption is made that uniform self-equilibrated tractions,
respectively having normal p:n; and tangential f; components, act on the crack faces of
normal n,. This approach, which is rigorous for penny-shaped cracks, allows a simple
description of the effects of the contact tractions by rewriting eqns (6) in the following
forms:

& = i (6:—p), (8a)
Vi = eyt (1, — ). (8b)

Once the macrostress T and the variables p,, f; and a, for each orientation n, are known,
and thus, by eqn (8), the corresponding extension ¢ and slide y;, the macrostrain E is
obtained :

N

E = KT+ Y [&n @ n+sym (y; ®ny)]. )]

i=1

Since the dependence of the variables p, f; and «, on the macrostress T is given by
anholonomic relations, as will be shown in later sections, constitutive equations (9) must
be expressed in incremental form. So the extension and the slide rates related to the ith
plane are given by:

g = Cniaiz[(d'i‘Pi)ai+3(0i—Pi)di], (10a)
¥ = eyt [(F— T +3(x —£)d)], (10b)

showing two different effects : the former due to the resolved stress rate and to the contact
tractions rate, the latter due to the crack growth rate. Equations (10) are meaningful once
the evolution laws of the contact variables p;, f; and of the damage variable «; are expressed
in terms of the macrostress rate T.

At a generic state of the loading process the specific dissipation rate D is given by

N
D= Z P&+ 9+ 9.4, (i)

i=1
where ¥, is the strain energy release related to all the cracks of normal n,, defined as
%, = 3ol [calo;—pi)* + cu(m — 1) * (7.~ ). (12)

The specific dissipation rate related to the ith orientation is due to both the dissipative work
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of the contact tractions on the corresponding deformations rate and the strain energy
release due to the crack growth rate.

From eqns (11), (8) and (12), it turns out that ¢;, y, and «, may be assumed to be
internal variables of the model to which are associated, respectively, p,, £, 4 (i = 1, 4").

3. SLIDING AND CRACK GROWTH CRITERIA

In the loading process the internal variables and the resolved stresses on the crack
planes of normal n (in Sections 3 and 4 the index i will be omitted) are subjected to two
conditions concerning both the friction contact between the crack faces and the crack
growth.

As regards the friction contact in closed cracks, the hypothesis that the tractions p
(<0) and f must satisfy the Coulomb condition is assumed, that is

¢, = f|+up <0, (13)

where u is the friction coefficient, to be considered as a further model parameter. If in an
infinitesimal step the conditions ¢, = ¢, = 0 are attained, then it is assumed that a slide
takes place in the direction of the unit vector v = f/|f|, with no extension:

é=0, (14a)
j=vi, iz0. (14b)
The traction p may be obtained as a function of the normal stress ¢ so that the extension

¢ and the traction p need not be considered as internal variables of the model. Since for
closed cracks no extension is allowed, the unilateral contact conditions are

e=20, (15a)
p <0, (15b)
pe=0, (15¢)

these conditions, together with eqn (8a), lead to

<0, p=o, (16a)
620, p=0, (16b)

from which it follows that if ¢ > 0 no contact traction is effective (open cracks). It is
worthwhile noting, as will be shown in Section 4, that the sliding rule (14b) does not allow
crack growth when no sliding occurs.

The second condition concerns the crack growth (¢ > 0), ruled by a fracture propa-
gation criterion. The hypothesis is advanced that the propagation of the n-oriented cracks
may take place when the strain energy release % equals the resistance to crack growth #.
On the contrary, if ¥ < # no propagation takes place (& = 0). So the resistance & is
assumed to be the overall measure of the fracture toughness related to the n-oriented
microcracks. It follows that the admissible states must satisfy the following conditions :

s =9—R<0. (17)

In an infinitesimal step, if the conditions ¢4 = ¢y = 0 are attained, then a crack growth
(d¢ > 0) is postulated.

Likewise the fracture criteria based on the resistance curve [see for reference Broek
(1986) and Ouyang et al. (1990)] and with the aim of modeling both stable and unstable
crack growth, the resistance to crack growth # is assumed as a positive growing function
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of the damage variables « in the range [1, +o0). The limiting case in which fracture
toughness is assumed to be a constant corresponds to the Griffith criterion.

4. DAMAGE AND SLIDING EVOLUTION EQUATIONS

The above sliding and crack growth criteria allow us to formulate the damage and
sliding evolution equations (the latter is meaningful only for closed cracks), giving a and y
as functions of the resolved stress rates ¢ and . These equations vary according to whether
microcracks are open or closed.

(a) Open microcracks (¢ = 0)
Since contact tractions are vanishing (p = 0, f = 0), the extension and slide depend
only on the resolved stresses, so condition (17) becomes :

Of = 3a’[c,o’+ ¢t T]—R(2) <O. (18)

Crack growth is only possible if ®f = 0 and the damage rate o is obtained as the solution
of the following linear complementarity problem:

& = 30 (c,06+ ¢t t)—Da <0, (19a)
i>0, (19b)
bfa=0, (19¢)
having defined
(R—-Y9
@ = —(~0a——) = R (2) —30(c,o? + .17 1). (20)

The solution to this problem essentially depends on the sign of 2 and on the stress rates ¢
and £ through the scalar variable

s=0d+pt-1, (21)

being p = ¢,/c,, and is given as follows:

2>0, s<0, a=0, (22a)
s>0, d3c,0%s/D; (22b)
2=0, s<0, a=0, (22¢)
§s=0, 0>0 (undetermined), (22d)
s> 0, no solution;
2 <0, s<0,(1) a=0, (22¢)
(@) @ =3c,a’s/2, (22f)
s> 0, no solution.

It is worth noting that no solution exists if 2 < 0 and s > 0, while if s < 0 two solutions
are given, which are associated with different values of the extension and slide rates [see
eqns (10)].

At the initial phase of a loading process, considering that from eqn (20) for vanishing
stresses @ > 0 follows, a stable crack growth takes place. A limit state is identified when
the condition 2 = 0 is attained, since further stress increments must obey the condition of
non-positiveness of the variable s ; the possibility that the above condition may be satisfied
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also depends on the choice of the toughness function #(-). By considering eqns (18) and
(20), the value a, of the damage variable at the limit state is the solution of the following
equation:

X' () — 2R () /o = 0, (23)

and is characteristic of the chosen toughness function. Once the limit state is attained, two
different paths may be followed : in the former, cracks are stable (& = 0), while in the latter
cracks are unstable (¢ > 0).

(b) Closed microcracks (o < 0)

Since in this case contact tractions on the crack faces are active, both the sliding and
the crack growth criteria must be satisfied.

The sliding criterion may be expressed, through equations (8b), (13) and (16), as a
function of the resolved stresses and of the internal variables y and a :

®, = |[t—y/ca’| +uo < 0. (24)

When @, = 0, the rates a and 4 must satisfy the conditions:

. 3

P, = ) i+ 4v yi+v t4+ud <0, (25a)
t

i=0, a>0, (25b)

bi=0, (25¢)

where the unit vector v depends, through eqn (8b), on the tangential stress T and on the
variables y and «.

Vice versa, the crack growth criterion (17) can be expressed, with p = ¢ and through
eqns (8) and (12), in terms of the internal variables o and y alone:

3
O =5y 7A@ <O 29)
C o

When ®; = 0, the rates & and A must satisfy the conditions:

_ 3 . 6 .
b; —Ct—a;v yl—[qasy y+.91’]a<0, (27a)
A>0, >0, (27v)
by =0. 270)

It turns out that, for evaluating the rates o and 4, four different cases are possible.

The case in which @; < 0, ®; < 0 obviously involves no sliding or crack growth (1 = 0,
d@ = 0). The same result is obtained when ®; < 0, ®; = 0, since, from eqn (27), the absence
of sliding (4 = 0) implies no crack growth (& = 0) ; this follows from the sliding rule (14b)
which implicitly establishes a dependence of the damage variable on the sliding.

On the contrary, sliding may take place without attaining the crack growth criterion
(@, =0, &5 < 0); having defined the scalar

&= Uc+v-1, (28)

the slide rate is found to be the solution of the linear complementarity problem (25), in
which ¢ = 0 is put,
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¢£<0, A=0, (29a)
¢>0, 1=cuas (29b)

Finally, when @, = ®; = 0, the rates ¢ and J are obtained as the solutions of the linear
complementarity problem (25)27), which admits a unique solution if and only if the
matrix

1 3

P R (30)
3

c.o’

6
\& Y+ R
Y o’ Yyt
is positive definite. From the above assumption it follows that A is positive definite if

det A =

1 ’ 3 2 In2
P [9? s I71°(1 —~3sin (p)]>0, a3n

where ¢ is the angle between the unit vector v and the sliding vector y. It turns out that the
solution depends on the sign of det A :

detA>0
¢ <0, i=0, 6=0, (32a)
£>0 (a) cosp<0, A=ca’s, a=0, (32b)
6hrl ro 3yl
(b) cos ¢ >0, i=¢ Py +& |/det A, ot cos @/det A; (32c)
detA=0
¢ <0, i=0, a=0, (32d)
¢=0 (@ A=0, a=0, (32¢)
(b) i>0 indeterminate, &=-— i, (326)
3|yl cos @
>0, no solution ;
det A <O
t<0 (a) i=0, a=0, (32g)
2
®) i= 1[6'7‘5 +9?'] / detA, o= "" (32h)
4> 0, no solution.

The solutions (32a, d, e, g) imply no sliding, while the solution (32b) takes into account
sliding with no crack growth; finally the solutions (32c,f, h) consider both sliding and
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damage. A picture of the above solutions is shown in Fig. 1, where the rates of the stresses
and of the internal variables are shown in the plane of the tangential stresses (for simplicity
¢ = 0 is considered). In such a plane the tangential stress z, the friction f and the vector
y/c. o>, representative of the sliding, are shown ; the no sliding domain (24) is a circle, having
radius |f] and center at the end of the vector y/c,a’, whose motion in the stress plane is
related to the sliding (the initial and the final state in the loading step are respectively
represented by continuous and dashed lines).

When det A > 0, two different possibilities can be envisaged according to whether or
not the stress rate involves the return of the stress point to within the no sliding domain.
The first case [¢ < 0 (32a)], shown in Fig. 1(a), concerns stress rates which move the stress
point inside the no sliding domain; the final state is ®; < 0, ®; = 0. This case is also
representative of the solution (29a). In the second case (¢ > 0) two further possibilities
must be distinguished from the value of the angle ¢, between f and y. For |¢| > =/2 [see
eqn (32b) and Fig. 1(b)] ¥ involves a decrease in |y| and, since o > 1, the consequence is
&; < 0; the no sliding domain moves in the direction of f and it follows that at the end of
the step @, =0, ®; < 0. This case is also representative of the solution (29b). On the
contrary, for |¢| < n/2 [see eqn (32c) and Fig. 1(c)] y increases |y| and then, in order to
satisfy condition (26), & > 0 must be attained ; by virtue of eqn (10b), it follows that the
motion of the no sliding domain is given by the vector (j— 3yd/x)/c,«’ and the final state is
O, =0 ;7 =0.

Fig. 1. Stress, friction and sliding rates and related motion of the no sliding domain in the plane of
the tangential stresses (¢ = 0).
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As in the above considerations relative to the open cracks, in the case of closed cracks
the condition det A = 0 characterizes a limit state. Once this condition is attained, only
stress rates inducing ¢ < 0 are admissible to which two solutions correspond : the former
involves the locking of the microcracks due to friction, the latter, which is unstable, is
characterized by crack growth with sliding. The limit state is attained for values « and ¢
that satisfy the equation:

R () —2R () (1 -3 sin’ p)/a = 0, (33)

which is obtained from the equations @3 = 0 and det A = 0. Then, unlike the results for
open cracks, it turns out that the value of the damage variable at the limit state depends
on the loading path; however, for proportional loading paths, since ¢ =0 (y and f
are parallel), eqns (33) and (23) coincide. From an analysis of eqn (33) it results that the
minimum value for the solutions is a, (corresponding to ¢ = 0) ; for growing values of the
angle ¢ the value of the solution of eqn (33) increases, until a limit value ¢* is reached
(depending on the # curve) beyond which no limit state can occur.

Finally for det A < 0 stress rates inducing ¢ > 0 are not admissible; two different
solutions may be obtained for # < 0. The former [see eqn (32g)] involves the locking of the
microcracks and may be represented in Fig. 1(a); the latter [see eqn (32h) and Fig. 1(d)]
corresponds to a slide with unstable crack growth.

With reference to the proportional loading paths, the analysis of the evolution equa-
tions and of the limit state conditions allow us to obtain, in the half plane (o, |1|), the limiting
resistance curve and the limiting sliding line which delimit respectively the admissible stress
states and the states in which no sliding takes place (Fig. 2).

For open microcracks (¢ = 0) the limiting resistance curve, obtained from Z2(«.) = 0,
is expressed as follows :

= ¢, (34)

where o, may be assumed as a material parameter that represents, as it will be shown in the
next section, the tensile strength in the direction n. For closed microcracks (¢ < 0) the
limiting resistance curve is obtained from det A(a,) = 0, being ¢ = 0 for proportional
loading paths; by substituting eqn (8b), bearing in mind that f = — poz/|z|, and through
the definition of the parameter o, given in eqn (34) the limiting resistance curve becomes

1l +u0 = 0/\/p =11, (39)

where 7, is the shearing strength in the plane for vanishing normal stress.
Finally the limiting sliding line

lz| +puo =0, (36)

is parallel to the limiting resistance curve.

Fig. 2. Limiting resistance and sliding domains.
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. 5. CONSTITUTIVE EQUATIONS AND FINITE STEP INTEGRATION ALGORITHM

The evolution equations formulated in the previous section for a subset of n-oriented
cracks compel an incremental evaluation of the response of the microcracked solid. Through
eqns (9), (10) and (14), after some manipulations, the macrostrain rate may be expressed
as follows :

Ve H

E = KT+Y o?H,[e,T+36,T]+ Y sym (% @n), 37

where 4% is the number of planes on which a; = 0, A"~ is the number of planes on which
g;<0and ®; =0 (A T+ A4~ < A), therates d; and y; are given by means of the evolution
equations and the tensor H; depends on the orientation n; and on the compliances defined
ineqn (7):

Hi,rshk = (cni - cti)nrnsnhnk + %cti [5rhnkns + 6rknhns + 6shnrnk + 5sknrnh]- (38)

Before facing the problem of integrating eqn (37) for finite load steps, it is worthwhile
to note that in the initial phase of the loading process the model response is stable until the
state for which the condition 2 = 0 or det A = 0 is satisfied for some orientation. This state
is a critical one for the model and the following stress rates are upper bounded (s < 0 or
£ < 0); for proportional loading paths it identifies the upper bound for the multiplier of
the applied stresses.

When the process is stress controlled, the states characterized by 2 < 0 (ordet A < 0)
at some planes are unstable; in this case different subsequent paths are possible, related
either to growing damage (¢ > 0) or to non-propagating microcracks (¢ = 0) at the critical
crack planes, involving two different strain increments.

In strain controlled processes, once the critical state characterized by 2 <0 (or
det A < 0) is attained, the model response may be stable or unstable. In fact, since the limit
state at a single plane corresponds to a limit state for the model and the strain increments
are defined as a sum of the strain in the elastic matrix and the contributions to strain related
to the crack planes, the response of the present model may be unstable, exhibiting in this
case the so-called snap back instability [see Bazant and Cedolin (1991)].

The integration of eqn (37) cannot be performed explicitly, except in very simple cases,
and a numerical procedure must be employed, based on a loading path discretization in
finite steps. With this aim, an increment AT of the macrostress is considered in the load
step, starting from the state defined by T, E and «;, y; (i = 1, #") ; hence, in order to obtain
the macrostrain increment AE, it is necessary to evaluate, in the load step and for each
plane where one of the limit conditions (18), (24) or (26) is attained, the corresponding
finite increment of the internal variables.

Ataplane of the set 4", where the condition ¢§; = 0is attained, the damage increment
Aua;, if allowed from (22), must satisfy the condition (18) at the end of the load step and
thus can be obtained as the solution of the non-linear equation

Df (0, +Ao;,1,+Av;, 0, +Aa)) = 0. (39)

Analogously, at a plane of the set 4", the increments Ay, and Aa; must satisfy the
conditions (24) and (26) at the end of the load step. If the more general case is considered,
which is characterized by ¢ = 0 and ¢4 = 0 at the initial state, the increments Ay; and
Aa;, if allowed from (32), must satisfy simultaneously :

O (0;+Ac;, T+ AT, y: + Ay, 0+ Aa)) = 0, (40a)
@5 (vi+ Ay, ;+Ax) = 0. (40b)

The non-linear equations may be solved through the following iterative procedure, starting
with y,o = y,and o, = a;:
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AA,-H,} {(I) (6,4 Aoy, T, + Aty yix ovk)}

» — A_l Vips Yiks O s\Y; is & is Yiks Wi, , 41

{Aai,k+l Vit Fide ] Dy (Vi %) (412)
Vikr1 = Vix+VixAdigs 1, (41b)
Okt = Qi+ Ay, (41¢)

in which the matrix A is that defined in (30), eqn (41b) represents a first order approximation
of y and

T+ AT — Y/ Cn’ask
|t + At — Yik/Cu “:?kl .

Vi (T AT, Vg, %) = 42)

The above procedure allows us to evaluate both the stable (det A > 0) and the unstable
(det A < 0) solution,

Finally, once Ay, and Ag, are obtained for each orientation, the macrostrain increment
AE is evaluated through (37) by substituting finite increments for the infinitesimal ones.

6. RESULTS AND DISCUSSION

In the present section the response of microcracked, elastic, homogeneously stressed
solids is analysed, which are characterized by two meaningful microcrack distributions:
parallel cracks and randomly oriented cracks. The former distribution, which may be
representative of layered materials, is the simpler one and the related results may be useful
for a better understanding of the response of the latter one.

The crack growth resistance function %£(«) is chosen according to those proposed by
Broek (1986) and Ouyang et al. (1990) with the aim of modeling the stable crack growth
and the fracture process in quasi-brittle materials; it is defined as follows :

R(a) = s(a—1)"", (43)

where the parameters - and m depend, through eqns (23) and (34), on the tensile strength
a,, the critical ratio «. and the extensional compliance ¢, related to the orientation n,

4
_ % 44
"= 1)’ (44a)
= %cnatz[ac(ac" 1) ae 1]2' (44b)

Moreover, since #(1) = 0, the # curve defined by (43) corresponds to the assumption of
a progressive crack growth at each step of the loading process. Finally, from eqn (44a), it
follows that the existence of limit states is allowed only if m > 1/2.

6.1. Parallel microcracks

A distribution of equioriented microcracks in an elastic isotropic matrix is considered,
which corresponds to a transversely isotropic solid, representative of stratified materials
such as schistose rocks and laminate composite materials undergoing damage in the interface
between adjacent layers. The material response under uniaxial stress has been analysed for
different crack orientations, defined by the angle p between the direction of the applied
stress and that orthogonal to the crack planes.
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Fig. 3. Parallel microcracks : response to uniaxial tensile stress.

In Fig. 3 the stable response to tensile stress is shown, which exhibits both the typical
stiffness degrading effect of the materials undergoing damage and the influence of crack
orientation on the strength and the stiffness. The dependence of the tensile strength a4, for
which the limit condition 2 = 0 is attained at the crack plane S-oriented, is obtained
through eqn (34) and is expressed as follows:

Oy = 0, ——a (45)

The overall modulus of normal elasticity E}, related to stable f-oriented microcracks
(o« = 1), is obtained through eqns (8) and (9) and is expressed as follows:

(1+ Ec,)(1+1t9°p)?

E¥=E% ,
P01 +1g%B)* + Ec,(1+ ptg*p)

(46)

where E¥ corresponds to f = 0. The comparisons between the experimental results obtained
by Nova and Zaninetti (1990) on schistose rocks under uniaxial tension, for varying
inclinations of schistosity, and the theoretical results, from eqns (45) and (46), are shown
in Fig. 4.

O/ 0 E; /E;

o 15° 30° a5 800 0 15° 30 45 60°

() g (b)

Fig. 4. Exp_erimental and theoretical results on schistose rocks: (a) variation of the uniaxial tensile
strength with crack orientation; (b) variation of the overall normal elastic modulus with crack
orientation.
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Fig. 5. Parallel microcracks: response to uniaxial compressive stress.

The graphs in Fig. 5 are related to the case of uniaxial compression and exhibit two
qualitatively different responses: (a) for B < arctan p sliding is not allowed for and the
response is that of the elastic matrix ; (b) for § > arctan u sliding and damage occur at the
loading phase OA’, while the unloading phase is characterized by a first no sliding phase
A’ B’ and a second one in which sliding occurs with no crack propagation until the stress
and strain vanish. In the case (b) the dissipation is due to friction and damage in the step
OA'’ and to friction only in the step B'O.

The post-critical response, referred to the previously considered uniaxial loadings, may
be stable or unstable in strain controlled processes according to the value of the material
parameters: Ec,, depending on the microcrack density, and m, which defines the shape
of the toughness function. When low values of the parameter Ec,, determining a small
contribution of the anelastic strain, and when high values of the parameter m, representing
a great fragility of microcracks, are considered, the model response exhibits snap-back
instability.

6.2. Randomly oriented microcracks

Consider now the case in which no particular microcrack orientation can be detected
in the material ; in such a case a uniform distribution of microcrack orientations can be
hypothesized (corresponding to the limiting case 4~ — c0), each orientation having an equal
number of cracks of size z, at the initial stage. Let us consider a unit vector mn and an
infinitesimal solid angle dQ as an orientation neighborhood of n; in the unit volume the
number of microcracks having a normal vector to the crack plane inside the orientation
neighborhood of n is

N
dn =5~ dQ, (47)

where N is the number of all microcracks in a unit volume of the material. So eqn (9) can
be rewritten in the form:

aQ
E= KT+L em; @ mi+sym (v, @ )] 5, (48)

where Q is the half unit sphere representing all the orientations and ¢ and y depend on the
resolved stresses and the contact tractions at the crack plane of normal n through eqn (8),
in which the compliances ¢, and ¢, have to be substituted respectively by the following
terms:
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Na3 - _ Na'(:; =
h= —E‘!I(V), k= ~E—y("), (49)

which are assumed to be material parameters (k = ph). This description implies isotropic
stress—strain relations when damage does not take place and contact tractions are not
effective.

In order to evaluate the response of the model to loading processes, the need arises to
integrate a function related to the evolution equations defined on Q; given the complexity
of the evolution equations a numerical integration has to be performed which considers a
finite number of orientations (to each one a weight w, is associated), chosen in such a way
as to approximate the material objectivity of the constitutive equations [see for example
the integration scheme proposed by BaZant and Oh (1985)]. So, having in mind eqn (37),
the finite increments of strain can be expressed as follows:

At N

AE = KAT+ Z a?H[e; AT + 3Aa; T]w; + Z sym (Ay; ® n)w,, (50)

where the compliance H is defined by (38), once the parameters ¢, and ¢, have been
respectively substituted by 4 and &, and Aa; and Ay, are obtained by the algorithm proposed
in the previous section.

First of all the stable response of the randomly oriented microcracked model to uniaxial
tensile stresses is considered and is shown in Figs 6(a) and (b). The loading phase, up to
the tensile strength o,, is characterized by a non-linearity due to the progressive anisotropic
crack growth, while the unloading phase is linear and exhibits a reduced modulus and
vanishing residual strains; further reloadings take place following this reduced modulus.
The diagrams shown in Fig. 6(a) are obtained for some values of the dimensionless parameter
Eh: for growing values of such a parameter, which is representative of the microcrack
density, there is a corresponding compliance increase (for Eh = 0 no crack is present). In
Fig. 6(b) the influence of the parameter m is shown, which rules the entity of the damage
at the limit state [see eqn (44a)] ; in the limit case m — oo, in which no crack grows, a linear
response is obtained involving extensions and slides only.

The response to uniaxial compressive stresses is shown in Figs 7 and 8; the loading
phase is characterized by a non-linear behavior due to the growth of the microcracks in
which sliding takes place, which are those for which the angle between their orientation
and the direction of the applied stress is greater than arctan y. The compressive strength is
given by

0. = 21/ p(/ 1+ +p)a,, (51)

T T T -

T T ™

/o,

Eh=0.4 Eh=1 Eh=25

m=2 m=1 m=0.75

NF
(7]

30
E&/0, (b)

Fig. 6. Randomly oriented microcracks : response to tensile stress.
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Fig. 7. Randomly oriented microcracks: influence of the parameters Eh and m on the response to
compressive stress.
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Fig. 8. Randomly oriented microcracks: influence of the parameters x4 and p on the response to
compressive stress.
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which corresponds to the attainment of condition (35) on the cracks whose angle between
their orientation and that of the applied stress is § = [z —arctan (1/u)]/2. Analogously to
the results of the parallel microcracked solid, the friction strongly affects the unloading
response ; the initial slope is that of the matrix (Ek = 0) and the following response is non-
linear because of the progressive increase in the number of orientations in which slidings
take place. In this phase no crack grows and no residual strain is present at the end of the
unloading phase ; furthermore the reloading response is linear, as shown by the dashed line
in Fig. 7(a). The influence of the parameters Eh and m on the axial and the lateral strain is
shown respectively in Figs 7(a) and (b).

In order to point out the friction effect on the compressive behavior of the model,
stress—strain diagrams obtained for meaningful values of the friction coefficient are shown
in Fig. 8(a); the diagrams show the influence both on the compressive strength [see eqn
(51)] and on the cycle shape, with particular reference to the unloading curve. Figure 8(b)
shows that the influence of the ratio p is effective only on the compressive strength and not
on the cycle shape.

In the previous examples the tensile and compressive strength have been expressed ; in
general, when proportional loadings inducing triaxial stress states are considered, the limit
resistance surface in the stress space can be obtained as the inner envelope of the limit
resistance surfaces related to all the orientations, each of them obtained as the locus of the
stress points satisfying the more restrictive of the limit conditions (34) and (35). If biaxial
stress states are considered, the limit resistance domain for randomly oriented microcracks
is that presented by Alpa (1984) and it is inscribed in those related to a finite number, A",
of orientations.

With the aim of showing the capabilities of the model in simulating the behavior of
quasi-brittle materials, some experimental results on concrete obtained by Maekawa and
Okamura (1983) are considered. In Fig. 9(a) the experimental results concerning cyclic
compressive behavior, obtained for different values of the maximum compressive stress,
are shown; the corresponding theoretical diagrams, shown in Fig. 9(b), are obtained by
means of the following values of the model parameters: Eh = 34.7, p=0.3, u=0.2,

los | (a)

G, /Oc
1

i i - N N L

0.5 0 05 n
€2/&c &1/&c

Fig. 9. Results obtained by cyclic compression on concrete: (a) experimental ; (b) theoretical.
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Fig. 10. Experimental and theoretical response of concrete under non-proportional loadings (first
stress path).

v= —0.17, m = 1.2. It follows that a good agreement is obtained with reference to the first
two cycles; in the cycle up to the compressive strength some differences may be observed
in the lateral strain that is underestimated near rupture, since the model does not allow
anelastic volumetric strain.

The capability of the proposed model in the case of non-proportional loadings is
analysed by simulating experimental results from those obtained by Maekawa and Okamura
on the concrete considered in the previous example and concerning biaxial stress states (the
theoretical results have been obtained with the previously selected values of the model
parameters). In the first loading path considered, the concrete is initially subjected to a
tensile stress (up to 0.284,), then a lateral compressive stress is applied ; the unloading phase
is performed by unloading at first the tensile stress and then the compressive one. In Figs
10(a) and (b) the experimental and theoretical results are respectively shown. Vice versa in
the second loading path a compressive stress is at first applied and then a lateral tensile
stress ; the experimental and theoretical results are shown respectively in Figs 11(a) and
(b). In both the loading paths a good agreement appears between the experimental and the
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(a) (b)
Fig. 11. Experimental and theoretical response of concrete under non-proportional loadings (second
loading path).
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theoretical results and, since the last ones have been obtained by assuming the material
parameters deduced by the uniaxial compressive loading, the validity of the mechanical
hypotheses at the base of the model is supported.

The last example considers a non-proportional loading path characterized by an initial
relevant tensile stress (up to 0.754,), inducing a significant crack growth, followed by the
application of lateral compressive stress. In Fig. 12 the response of the model is shown: in
the initial phase of the compression AB a compaction effect is shown, which is due to the
closure of previously opened microcracks, followed by the progressive stiffness degrading
phase.

Let us consider now simple cases of the post-critical behavior of the model, supposing
that the homogenization process, on which the formulation of the constitutive equations is
based, is still admissible.

If uniaxial tensile stress is considered, the critical condition is attained on the plane
normal to the applied stress. Afterwards only unloading steps are allowed to which there
corresponds an unstable propagation of the critical microcracks and a linear response at
the cracks of the other orientations, which are stable [see eqn (10)]. Since, according to
the assumption of the continuum distribution of orientations, the subset of the critical
microcracks has vanishing measure, their contribution to the strain is vanishing too; it
follows that the strain depends linearly on the stress with a reduced modulus (in this case
stable and unstable response cannot be distinguished). Similar results are obtained if
uniaxial compressive stresses are considered ; in this case, the limit condition is attained at
the microcracks whose orientation is defined by an angle f = [r—arctan (1/u)]/2 with
respect to the direction of the applied stress (corresponding to a parallel of the half unit
sphere of orientations). However, such a domain also has a vanishing measure so that the
contribution to the strain in the unloading phase due to the unstable propagation of the
critical microcracks is vanishing. A post-critical response of the model follows, which does
not seem suitable for simulating the material behavior, since it corresponds to a limiting
case of the snap-back instability with infinite brittleness [in the sense of Carpinteri (1989)].
This drawback comes from relating the crack growth criterion to the continuous distribution
of the crack orientations in €, which is a material idealization suitable for the pre-critical
response but not adequate for the post-peak phase. In fact, since the actual distribution of
microcracks in the material is discrete both in amplitude and in orientation and the stress
field is inhomogeneous, the critical state may be attained at nearly parallel microcracks.

An attempt may be considered which, by associating a finite measure AQ with the
neighborhood of the orientation n, assumes a finite number of orientations .4#", according
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Fig. 12. Response to non-proportional loadings: compaction and stiffness degrading under
compressive stress.
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to the scheme in Section 2. In this hypothesis, when the limit condition is attained on the
orientation n, a finite number n;, = NAQ/2rn of microcracks are at the limit state.

The choice of the 4" orientations must be such that the material symmetry group,
which depends on the set of orientations, tends to the rotation group for 4~ — co. For the
response evaluation through eqn (50), the weight w = AQ/2n = 1/.4” has to be associated
with each subset and furthermore the number of subsets must be high enough for the
resistance strength to come out markedly invariant with the choice of 4. However this
condition does not seem to be restrictive ; for example, if uniaxial tensile stress is considered,
an appreciable divergence between the critical crack orientation and the stress direction has
little effect on the tensile strength, as it may be observed from Fig. 4(a). It has been verified
that such an approach, with reference to the stable response, leads to acceptable results
provided that a number 4" > 30 is assumed.

The sets of orientations satisfying the above-mentioned requirements correspond to
the solutions of the problem of the regular tessellation of the unit hemisphere, which exist
only for discrete values of A" ; approximate solutions may be obtained by considering semi-
regular tessellations [see for reference Coxeter (1973) and Onat and Leckie (1988)]. If only
axisymmetric stress states are considered, inducing axisymmetric distributions of the internal
variables, proper sets of .# orientations can be easily obtained located in a diametral half-
plane of the half unit sphere containing the axis of symmetry. The first orientation is chosen
parallel to this axis, while the others define equal arches [of measure 7/(2.4 — 1)] on the
half meridian ; the weight w; associated with a generic orientation is chosen proportional
to the area of the related spherical segment. This scheme may be assumed equivalent
to a set of orientations in the three-dimensional representation, whose number is
N =~ 824 —1)*n’.

The response to uniaxial tensile stresses is shown in Fig. 13. Figure 13(a) confirms the
independence of the stable response from the number of orientations .4~ (with reference to
the considered range of values) and points out the marked influence of such a parameter
on the post-critical response. With reference to strain controlled processes a stable response
is obtained for A"~ 400 (# = 12), while for 4 =~ 1600 (A = 23) and A" ~ 4000
(# = 36) the snap-back instability takes place. Figure 13(b) shows the influence of the
parameter m, related to the toughness function Z%(«): by increasing the parameter m the
transition from stable to unstable response is obtained.

Finally the response to uniaxial compressive stresses for varying 4" and m is shown
respectively in Figs 14(a) and (b). In this case the transition from stable to unstable response
is attained for a value of 4" higher than that related to the case of applied tensile stresses ;
in fact, as shown in Fig. 14(a), the snap-back instability takes place for A" ~ 120,000
(A = 193).

This behavior can be explained by considering the slope of the tangent to the stress—
strain diagrams at the inception of the unloading phase for the limiting case A4~ — oo,
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(a) (b)

Fig. 13. Post-critical response to uniaxial tensile stress : (a) influence of the number of orientations
A" ; (b) influence of the parameter m.
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Fig. 14. Post-critical response to uniaxial compressive stress: (a) influence of the number of orien-
tations .#"; (b) influence of the parameter m.

when the measure of the critical orientations is vanishing. When compressive stresses are
considered, the corresponding slope is that of the elastic matrix (Eh = 0), which is an upper
bound, while if tensile stresses act, the slope is related to the secant modulus. As this
difference in slope between the two stressing modes remains for finite A", and the slope
being increased for 4 diminishing, it follows that the change in sign of the slope, that is
the transition from unstable to stable behavior, is first attained in compression for higher
values of 4. Furthermore the influence of the number of orientations at the critical state
must be considered; in fact when compressive stresses are applied, a greater number of
critical orientations are effective, if compared with the case of applied tensile stresses, whose
effect is to limit the tendency of snap-back instability.

7. CONCLUSIONS

Based on a vectorial representation of the damage, a microcrack model is developed
which, by taking into account the unilateral friction contact between the microcrack faces,
is able to describe the different behaviors of brittle and quasi-brittle materials under tensile
or compressive stresses.

Comparisons between the theoretical and experimental results show the capability of
the proposed model also when non-proportional stress paths are considered ; several exam-
ples show some characteristics of the brittle materials’ response such as anisotropic damage
and loading path dependence.

Finally an interpretation of the different post-peak behavior of brittle and quasi-brittle
materials under tensile and compressive stresses is given in the context of the present model.
By introducing an appropriate parameter it is shown that the moderate brittleness observed
when compressive stresses act may be interpreted as a consequence of the friction in the
microcracks.
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